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1. Introduction 

The use of woven Kevlar fabric is prevalent in many applications, such as body armor, helmets, 
and composite structures.  The performance of these fabrics is influenced by yarn material 
properties, yarn geometry, yarn architecture, boundary conditions, crimping, friction, etc.  The 
ability to measure the strain on an individual yarn can provide insight into the yarn-to-yarn 
interactions within a fabric.  Photogrammetric analysis has been used to measure the 
deformability of fabrics and textile composites.  For instance, Lomov et al. (1, 2) studied the 
in-plane deformation of yarns in a fabric that underwent shearing using two-dimensional (2-D) 
photogrammetry.  Non-optical techniques have also been used to measure the strain in yarns.  In 
one case, Chocron et al. (3) wove a nickel-chromium wire that can measure strain into a fabric. 
In this report, we present a three-dimensional (3-D) photogrammetric analysis of a Kevlar fabric 
that has been subjected to a push-rod stretching test.   

Computational (or finite element method [FEM]) models have been used to analyze ballistic 
impact on fabrics. Cheeseman (4), Duan (5, 6), Lim (7), and Talebi (8) used 3-D FEM solid 
elements to simulated fabrics impacted by projectiles of various geometries and confined under 
different boundary conditions.  A fabric membrane model was developed by Yen (9) to lower 
the computation cost with a minimal reduction in accuracy.  Most the aforementioned models 
need to be validated and the input parameters need to be optimized.  We present an approach to 
optimize a constitutive model of a Kevlar fabric.  We use experimental results to validate the 
FEM model and identify the sensitivity of the friction coefficient between yarns under a static 
stretching condition.  

2. Experimental Method 

We used a 5x5 plain-weave Kevlar fabric in the stretching test (5 warp yarns per inch and 5 
weft yarns per inch, 12105 denier yarn, areal density = 530 g/m2).  The fabric was clamped to a 
steel frame that had a circular opening diameter of 5.08 cm (figure 1).  The push rod had a 
1.905-cm-diameter brass ball attached to the end of the rod.  We measured the applied force 
with an in-line load cell and used a screw rod to provide the forward movement (in the z-
direction) of the push rod.  To track displacement, we painted the surface of the fabric facing the 
cameras with a random dot pattern using black pen ink.  Two charge-coupled device (CCD) 
cameras (Photron SA1, Photron USA, Inc.) were employed to generate stereo images of the 
deforming fabric.  The cameras were placed behind the target fixture along the z-direction and 
the angle between of the cameras was set at 20°.  The images were recorded at a 512×512 pixel 
resolution with a 1/60 s exposure on each frame.  Each camera used a macro lens (Nikon AF-
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Nikkor) with a focal length of 85 mm and a f-stop of f/8.  The field of view was about 5 x 5 cm, 
centered on the location of the push-rod ball point.  We saved the images as 8-bit TIFF files and 
analyzed them using a commercially available photogrammetric software program called 
ARAMIS (GOM GmbH, Germany, distributed by Trilion Quality Systems in the United States).  
ARAMIS has a built-in algorithm for calculating the displacement (the ARAMIS default 
settings are 15×13 facets × step, which is a standard calculation).  The displacement sensitivity 
was at least 1.7 microns (10).    

 
 
 
 
 
 
 
 
 
 
  
 
 
 

Figure 1.  The push-rod assembly and the steel frame. 

The displacement on a particular yarn crossover was tracked based on a set of points.  The strain 
was calculated using the arc length across a set of four points (equation 1):   

 
)

l
lln(
o

=ε
 (1) 

where ε is the strain, l is the deformed arc length, and lo is the undeformed arc length.  The 
deformed arc length is calculated using equation 2: 

 2/1222 )zyx(l ∆+∆+∆= ∑  (2) 

where ∆x, ∆y, and ∆z are the displacements between the tracking points.  The average strain on 
the yarn crossover is an average from three sets of tracking points (figure 2).  The initial arc 
length is about 3.5 mm.  The axes shown are the global coordinates.  The tracking points are 
along the yarn axis, which is not necessarily parallel to the global x-axis. 
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Figure 2. The field-of-view of the fabric in the steel frame, 
showing the three sets of points on the yarn for 
tracking the displacement on yarn crossover #2.   

3. Experimental Results 

We collected photogrammetric data to determine the fabric deflection as a function of the 
applied force.  Figure 3 shows a full-field measurement of the x-, y-, and z-displacements of the 
fabric during stretching.  The displacement plots indicate that the principal warp and weft, the 
yarns that were directly engaged by the push rod, experienced a higher stretching ratio than the 
secondary yarns.  The contour lines illustrate that the fabric response is not isotropic; the 
greatest displacement gradients are along the weft and warp directions.  The deformed fabric 
takes on a shape of a square pyramid with its corners along the warp and weft directions.  This 
shape is similar to the shape of a deformed fabric that has been impacted by a high-speed 
projectile.  Under static stretching conditions, the corners of the pyramid extend to the boundary 
of the circular clamp.  However, during an impact event, the corners of the pyramid move 
toward the boundary. 

A full-field strain tensor cannot be evaluated using the deformation gradient derived from the 
displacement vectors in this experiment.  Fabric is not a rigid body.  There are crimps in the 
yarn that can straighten out before the yarn is actually strained.  Also, one yarn can slip past 
other yarns creating a false indication of strain.  The best method for calculating strain is to 
track the changes in the arc length at the yarn’s crossovers. 
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Figure 3.  The x-, y-, and z-displacements at applied forces of 0, 110, and 438 N, respectively. 

Figure 4 shows the calculated average strain along the principal yarn at various locations.  At 
low applied forces, the calculated strain values are very noisy.  This effect is due to the 
displacement sensitivity limit of the instrument.  According to the ARAMIS manufacturer, the 
instrument’s sensitivity is ~0.002 mm for a field of view of 50 mm2 (10).  
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Figure 4.  Average strains along the principal yarn at the crossovers; the error bar is the standard  
deviation from the mean strain. 

The strain plots indicate that the strains along the yarn are not uniform.  The highest strain is 
located near the contact point between the push rod and the fabric; the lowest strain is near the 
clamp boundary.  The loads are not transmitted uniformly along the yarn.  The yarn is pinned 
between the crossovers and the frictional force that interlocks the crossovers constricts the 
movement of the weft yarn, preventing strain relief from the relaxed section to the location 
where the yarn is already under strain.  Once the applied force overcomes the frictional force at 
the crossovers, yarns can slip past each other, allowing the principal yarn to uncrimp and 
provide strain relief.  The crossover near the push rod on the principal weft yarn experiences the 
highest strain among the crossovers.  The loading is attenuated from the point of contact with 
the push rod to the boundary of the clamp, which indicates that some of the loading is being 
borne by the secondary yarns between the crossovers. 

4. Finite Element Modeling 

The fabric model used here is a yarn-level FEM model based on a ballistic model from an 
earlier work (9).  Computations were performed using the ABAQUS/Explicit software package.  
The yarns are represented by membrane (no bending stiffness) elements to reduce computation 
time, and the yarns in the fabric are simplified to plane segments (figure 5).  
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Figure 5.  (a) FEM mesh of the fabric and (b) the yarn dimensions.   

An orthotropic elastic constitutive model is used to describe the yarns:  

 

 
 
 
 
 
  (3) 

 
 
 
 
 

where  is the strain,   is the stress, E is the Young’s modulus, G is the shear modulus, and is 
the Poisson ratio.  The yarns are oriented such that the fiber axis is the 11 direction.  In 
actuality, each yarn consists of a bundle of fibers, which could be considered transversely 
isotropic.  However, since we are using a continuum model at the yarn level, the moduli in all 
other directions, including the shear moduli, are assumed to be two orders of magnitude smaller 
than the principal yarn direction (9).  Note:  The modulus used here is an effective modulus, 
E11

*, where E11
* < Efiber.  This is due to the density of the yarn being less than the density of the 

base material due to the packing of the fibers.  Poisson effects are assumed to be negligible and 
a small Poisson ratio of 0.001 is used.   

A fixed boundary condition is applied to the yarn at the edge of the circular frame.  The push 
rod is modeled as a rigid body.  The value for the dynamic and static friction coefficients 
between the push rod and the fabric is 0.36 (11) and the friction coefficient, s, between the 
yarns is set to 0.25.  Since there is uncertainty in E11

*, due to difficulties in measuring the actual  
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density of the yarn and local variations in the fiber packing, a parametric study of for E11
* was 

used to determine this effect on the fabric’s response.  An optimized effective modulus, E11
*, 

was determined by comparing the experimental data to the modeling results.  

5. Comparison of Experimental and Modeling Results 

Figure 6 compares the experimental and modeling results of the applied force as a function of 
fabric displacement for the frictionless case.  If the value of E11 is set too high, the fabric is too 
rigid.  On the other hand, if E11 is set too low, the fabric is too compliant.  There is an optimum 
value for E11 in which the modeling results are in reasonable agreement with the experimental 
results.  Root mean square errors (RMSEs) were computed between the modeling values and 
the experimental curves for E11 = 35, 30, and 25 GPa.  The RMSEs were 0.114, 0.048, and 
0.106, respectively.  E11 = 30 GPa yielded the lowest RMSE; the force versus displacement 
profile was closely matched to the experiment data, especially in the low applied force (low 
displacement) region.  RMSEs were also computed for µs = 0, 0.25, 0.50, and 0.75 while setting 
E11 = 30 GPa.  The RMSEs were 0.048, 0.046, 0.046, and 0.048, respectively, indicating that 
the displacement was insensitive to the fiction coefficient between the yarns.  Unlike the case in 
dynamic impact, the yarns have time to redistribute their loads by slipping pass each other at the 
crossovers during the static stretching.     
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Figure 6.  Comparison of experimental and modeling results: E11 modulus sensitivity (frictionless 
case).  

There was a small discrepancy at the high applied force region where the modeled fabric 
showed more compliance than the actual fabric in the experiment.  Instead of having a 
continuous curvature, the modeled yarns actually had a large crimping angle of 154.5°, which 
allowed the modeled yarns to have more yarn length to uncrimp than the actual yarn has.  So, 
the modeled fabric had a higher deflection than the actual fabric at a given applied force.    

The yarn strains at the crossovers are compared in figure 7 for E11 = 30 GPa.  Although the 
strain values are not exactly matched, the trend of increasing strain as a function of increasing 
applied force is in close agreement.  The strain as function of the yarn crossover location also 
follows a similar trend:  the strain increases from the fabric boundary to the area where the 
fabric is in direct contact with the push rod. 
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Figure 7.  Comparison of experimental and modeling results: strains at the principal yarn crossovers 
(friction coefficient = 0.25).  

6. Conclusions 

In this study, we used photogrammetry to measure fabric stretching under static conditions.  We 
successfully measured the local strain along a yarn in a fabric as it underwent stretching.  The 
ability to measure the local strain on an individual yarn is a valuable tool for examining the 
mechanical behaviors of a fabric.  We implemented a FEM model to simulate the experiment.  
The moduli in the FEM model were optimized by comparing the modeling results with the 
experimental data.  After the optimization, the simulated displacement and strain time histories 
agreed reasonably well with the experimental data.  

E11 =  30 GPa 
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